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Chapter 2 Wave Optics

- Improves on Ray Optics by including phenomena such as interference and
diffraction.

- Limitations: (1) Cannot provide a complete picture of reflection and refraction
at the boundaries between dielectric materials. (2) Cannot explain optical
phenomena that require vector formalism, such as polarization.

2.1 Postulates of Wave Optics
The wave equation

Cy

Light speed in a medium: c=— (2.1-1)
n
Wave function u(#,t) [position 7 =(x, y,z), time {] satisfies
2
Wave equation  V’u— %37? =0 (2.1-2)
c

Wave  equation is linear.  Principle of  superposition  applies:
u(7,t)=u,(7,t) +u,(7,t)

Wave equation approximately applicable to media with position-dependent
refractive indices, provided that the variation is slow within distances of a
wavelength — Locally homogeneous, n =n(7), ¢ =c(¥).

Intensity, power, and energy
Optical intensity: optical power per unit area (watts/cm?)

I(7,1) = 2<u2(17,t)> (2.1-3)

< > : average over a period >> 1/frequency.

Optical power (watts) flowing into an area A normal to the propagation direction:
P(1) = [I(F,t)dA (2.1-4)
A

Optical energy (joules) collected in a given time interval 7 is IP(t)dt :
T

2.2 Monochromatic Waves

u(7,t) = a(7) cos[2t + o(7)] (2.2-1)



EFE 485, Winter 2004, Lih Y. Lin

1)
: Im{U} Im{Urz)
¢lw

~ w
j_ﬂ ﬂ ﬂ /.\t ’ > Re(U) / /\/'ﬁ > Re{Uft))
JUUVY N

fa) fb) fc)

F_'|gure 2.2_-1 Repres-:_:ntations of a monochromatic wave at a fixed position r: (a) the wavefunc-
tion u(z) is a harmonic function of time; (b) the complex amplitude U =« exp(j¢) is a fixed
pha_u?r_. (¢) the complex wavefunction U(r) = Uexp(j2=vt) is a phasor rotating with angular
velocity @ = 27 v radians/s. )

A. Complex Representation and the Helmholtz Equation
Complex wavefunction

U(7,t) = a(7)exp[ jo(F)lexp(j27ft) = U (F)e’” (2.2-2,5)
U(7): complex amplitude
2
viu-19Y_ (2.2-4)
¢~ ot

The Helmholtz equation and wavenumber
Substituting (2.2-5) into (2.2-4) obtains:
(V2 +kHUF)=0 (2.2-7)

k= % : wavenumber (2.2-8)

Onptical intensity
17 =|u@)| (2.2-10)
not a function of time.

Wavefronts
The wavefronts are the surfaces of equal phase, ¢(7) = constant.

B. Elementary Waves
The plane wave
Complex amplitude:

U(r)= Aexp(—jl; F)=Aexp[—jlk.x+k,y+k.z) (2.2-11)

k : wavevector — direction of propagation

‘k‘ = k = wavenumber
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1= ¢

Wavelength =— 2.2-12
g P ( )
c 1s called the phase velocity of the wave.
—}
ulz, tq) | e _)’ % |‘—

T AN
. WAL

Figure 2.2-2 A plane wave traveling in the z direction is a periodic function of z with spatial
period A and a periodic function of ¢ with temporal period 1/v.

In a medium of refractive index n, f'is the same,

c=S g2t k = nk, (2.2-14)
n n
The spherical wave
U(F) = A g (2.2-15)
r
4
[(l") = —
r

The paraboloidal wave
Fresnel approximation of the spherical wave.
Examine a spherical wave originating at 7 =0 at points 7 =(x, y,z) sufficiently

close to the z axis but far from the origin, so that /(x* + y*) << z. Use paraxial
approximation, Taylor series expansion, and Fresnel approximation:

2 2
U7) = exp(- jkz)exp(— kY j (2.2-16)
z

2z
First phase term: planar wave. Second phase term: paraboloidal wave.



EE 485, Winter 2004, Lih Y. Lin

By -

Spherical Paraboloidal Planar

Figure 2.2-4 A spherical wave may be approximated at points near the z axis and sufficiently
far from the origin by a paraboloidal wave. For very far points, the spherical wave approaches the
plane wave.
e Validity of Fresnel approximation
Fresnel approximation valid for points (x, y) lying within a circle of radius a
centered about the z axis at position z, if a satisfies a* << 4z°A, or
N6’
—Em << (2.2-17)

where 6, = a/z 1s the maximum angle, and
2

N, = “E Fresnel number (2.2-18)

2.4 Simple Optical Components
A. Reflection and Refraction

Laws of reflection and refraction can be verified by wave optics. Please read the
textbook.

B. Transmission through Optical Components

(Ignore reflection and absorption. Main emphasis on phase shift and associated
wavefront bending.)

Transmission through a transparent plate
e Normal incidence

1 1

-

Figure 2.4-3 Transmission of a plane wave through a transparent plate.
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Complex amplitude transmittance
t(x, y) = exp(—jnk,d) (2.4-3)

— The plate introduces a phase shift nk,d = 272%

e Oblique incidence
t(x,y) = exp|— jnk,(d cos 6, + xsin6,)]

Figure 2.4-4 Transmission of an oblique plane
wave through a thin transparent plate.

Thin transparent plate of varying thickness
Transmittance = (Transmittance in air) x (Transmittance in plate)

t(x, ) = expl— jky(d, — d(x, y))|exp|— jnk,d(x, )]
= exp(_jkodo) exp[— ](n - l)kod(xa y)]

(2.4-4)

Figure 2.4-5 A transparent plate of varying
thickness.

Thin lens
Utilizing Eq. (2.4-4) results in
. x2 + 2
t(x,y) = h, exp{ jk, ny } (2.4-6)
where hy, = exp(—jnk,d,) : constant phase factor
f= R " : focus length of the lens
n —_—
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Figure 2.4-7 A planoconvex lens.

Diffraction grating

An optical component periodically modulates the phase or the amplitude of the
incident wave. It can be made of a transparent plate with periodically varying
thickness or periodically graded refractive index.

& -l |

=
qe L /\L

Figure 2.4-11 A thin transparent plate with periodically varving thickness serves as a diffrac-
tion grating. It splits an incident plane wave into multiple plane waves traveling in different
directions.

The diffraction grating shown above converts an incident plane wave of
wavelength A << A, traveling at a small angle 6, with respect to the z axis, into

several plane waves at small angles

A
6,=06+ 9\ (2.4-9)
with the z axis.
q=0,=£1,+2, ... :diffraction order
In general, without paraxial approximation
. . A
sin@, =sin 6, + ¢ N (2.4-10)



C. Graded-index Optical Components
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Instead of varying thickness, varying refractive index.
Varying thickness: t(x, y) = exp|— Jn.k,d(x, )]
Varying refractive index:  #(x, y) = exp[— jn(x, y)kodo] (2.4-11)

Figure 2.4-13 A graded-index plate acts as a lens.

2.5 Interference

Linearity of the wave equation — Superposition of the wavefunctions
But not superposition of the optical intensity because of interference.
(Consider waves of the same frequency in this section.)

A. Interference of Two Waves
Ur)=U,(7)+U,(r)

Ul E\/Tlej(ﬂl’ U2 E\/Zej%

Intensity interference equation:
[=|U] =1, +1,+2/I1, cos¢
=0, =0

(2.5-4,5)

= o 711+I2

fa)

Figure 2.5-1 (a) Phasor diagram for the superposition of two waves of intensities f, and I, and
phase difference ¢ = ¢, — ¢;. (b) Dependence of the total intensity 7 on the phase difference ¢

Spatial redistribution of optical intensity. Power conservation still holds.

Interferometer

-dn -2

<Y

0 2r 4n

(b

Waves superimpose with delay d — ¢ =27(d/A)
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I=2[,1+cos 27:% (2.5-6)

Figure 2.5-2 Dependence of the intensity I of
the superposition of two waves, each of intensity
Iy, on the delay distance d. When the delay
distance is a multiple of A, the interference is
constructive; when it is an odd multiple of A/2,
d  the interference is destructive.

difference ¢, the total intensity may be smaller than I, + I, at some positions and
greater than 7, + I, at others, with the total power (integral of the intensity) con-
served.

Three important examples of intereferometers: Mach-Zehnder interferometer,

Michelson interferometer, Sagnac interferometer.
Us

{a) Ug 2
Uy

Beamsplitters

(b)

fe)

Beamsplitter

U
- g Mach-Zehnder interferometer; (b) Michelson interferome-
% IR waves U and U,. After traveling

osition wave U = U; + U, whose
n the Sagna

Figure 2. £ er |
ter; (¢) Sagnac interferometer. A wave Up i sph_t into two
through different paths, the waves are recombined into a superp |‘ :
intensity is recorded. The waves are split and recombined using beamsplitters.

interferometer the two waves travel through the same path in opposite directions.
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Intensity / is a very sensitive function of ¢ = 271'% = Zﬂ'ﬂ =2z nd
0 Co

— Can measure small variation of d, n, Ay, or f

Interference of two oblique plane waves
U, =1, exp(~jk2)
U, = \/Zexp[— Jjk(zcos0 + xsin 6)]
At z=0,9p=kxsin@,
— =211+ cos(kxsin 8)] (2.5-7)

Period of interference pattern A = A

sin @

x
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Figure 2.5-4 The interference of two plane waves at an angle @ results in a sinusoidal intensity
pattern of period A /sin 6.

B. Multiple-wave Interference
M waves of equal amplitude and equal phase difference

U, =1, explj(m-Dopl, m=1,2,..,.M (2.5-9)
M
u=xU,
m=1
2
I :‘U‘z = M (2.5-10)

* sin’(p/2)
In the graph of I as a function of ¢, the number of minor peaks between the main
peaks =(M - 1).
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(a)

Figure 2.5-7 (a) The sum of M phasors of equal magnitudes and equal phase differences.
(b) The intensity I as a function of ¢. The peak intensity occurs when all the phasors are aligned;

itis M times greater than the mean intensity / = MI,. In this graph M = 5.

Infinite number of waves of progressively smaller amplitudes and equal phase

difference

U, =J1,r" /" m=1,2,3,..

A

m=1 1—1"8.

r<l

U:iUm:

1=\U\2=1

where [ =

(a)

Imax

+(2.7 /n) sin*(p/2)

(2.5-13)
(2.5-15)
(2.5-16)

(2.5-17)

2n

-y
3
<Y

Figure 2.5-9 (a) The sum of an infinite number of phasors whose magnitudes are successively
reduced at a geometric rate and whose phase differences ¢ are equal. (b) Dependence of the
inensity I on the phase difference ¢ for two values of .%. Peak values occur at ¢ = 2aq. The
width (FWHM) of each peak is approximately 2w/% when & > 1. The sharpness of the peaks

increases with increasing 7.

10
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When r approaches 1, I ., can be very large! — Principle of optical resonators,
lasers.
e Physical meaning of ./~
Consider values of ¢ near the ¢ =0 resonance peak
1
] ~ max 2.5-18
1+( /7 /x) ¢ ( )
Full width at half maximum (FWHM)
Ap=2" (2.5-19)

S
— Finesse is a measure of the sharpness of the interference function.

2.6 Polychromatic Light
Can be expressed as the sum of monochromatic waves over frequency.

The pulsed plane wave

oo

U(r,t)= ZL _[A e“e/dw

o (2.6-8.9)
=a(t=")
C
a(t) = 1 [4,edw (2.6-10)
2r

is a function with arbitrary shape

]

?MW“\ IAuHr
—
Al

fe) (b)

re 2.6-2 (q) The wavefunction u(r, 1) = Re{z(t — z/¢)} of a pulsed plane wave of time
tion ¢, at times ¢ and ¢ + 7. The pulse travels with speed ¢ and occupies a distance
hccq. (b) The magnitude | A,| of the Fourier transform of the wavefunction is centered at v
as a width a,,.

If a(¢) is of finite duration o, in time —
Pulse width in space = co,

a

ny
w ‘I’
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Pulse width in frequency domain (spectral bandwidth) depends on pulse shape, see

Appendix A. . o o
E.g., for Gaussian function in space, its Fourier transform is still Gaussian in

1

frequency domain. o, =1 ps, co, =0.3 mm, 0, = pp— =80 GHz.
t

TABLE A.1-1 Selected Functions and Their Fourier Transforms

Function fte) F(v}
Uniform I 1 hl__,
0 t 80 0 v
Impulse st 1 — [T
0 t ) o] ¥
Rectangular | rect (¢ sing| —— /I\l e~
1 P 1 7 (t) ("’) N i
-1 3 —2 =1 oit T
Exponential® 'J/[\ exp(~[t| 2 —‘A-‘—
-1 0 1 t Bl 1 +(2mv)2 -1 0 1y
Gaussian exp(—nt2) exp(-mvd) ‘A
=il 0 1 v

-1 o] 1 4
v

Sum of M=28+1 “I” 5 ‘
impulses 2 8(t—n) (M)
012 t n=-85 sin(my)
ceor N 11111 3
of impulses ‘” E 8(t-n) E G(v—n) |
012 t n=-wm n=-o 012 v

“The double-sided exponential function is shown. The Fourier transform of the single-sided exponen-
tial, f(z) = exp(—¢) with ¢ = 0, is F(z) = 1/[1 + j2%rv]. Its magnitude is 1/[1 + @ae)?)2,
The functions cos(wt?) and cos(mr2) are shown. The function sin{?) is shown in Fig. 4.3-6,

Interference (beating) between two monochromatic waves

U(t) =1, +[I,e”™ (2.6-11)

12
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Utilizing the interference equation (2.5-4),
[=|U[ =1, + 1, + 211, cos|2x(f; - 1, )] (2.6-12)
‘ |- f2‘ =Beat frequency

Interference of M monochromatic waves
Consider an odd number M = 2L + 1 waves, each with intensity /, and frequencies

f;]=f;)+QfFa q:‘L,...,O,...L
centered about f, and spaced by f, << f,.

U =1, Sexplj2n(f, +af, )] (2.6-13)
Utilizing Eq. (2.5-10), q

s 2
1= =g, S WAIT,) (2.6-14)
sin®(m2/T},)
— A periodic sequence of pulses with period T, =1/ f,., peak intensity M°I, .
WT Itt)
VT e j_'{_gTF"_)"
e
12 M
ygaciat L SR SN SO L S L
1 |
_ S .
M

Figure 2.6-3 Time dependence of the intensity of a polychromatic wave composed of a sum of
Mmopoclhromatic waves, of equal intensities, equal phases, and frequencies differing by v. The
intensity is a periodic train of pulses of period T, = 1/vy with a peak M times greater than the
mfiﬁnl.:Thn; duration of each pulse is M times smaller than the period. This should be compared
with Fig. 2.5-7.

Application: Mode-locked laser for generating short laser pulses.

13



